Speeding up the Search for Axions with Quantum Squeezing

Kelly Backes

CPAD

March 22, 2021

The Haloscope Detection Scheme

Interaction: $\mathcal{L} \supset g_{a\gamma\gamma}a\mathbf{E} \cdot \mathbf{B}$

 P_a vs frequency

- High Q cavity: $Q = \frac{f_c}{\Delta f_c}$
- Low noise amplifier
- Tunable: $hf_a \approx m_a c^2$
- Large magnet: B = 8 T
- Cryogenic: T = 60 mK

haloscope principle: P. Sikivie, *Phys. Rev. Lett.*, **51**, 1415 (1983)

Haloscope Figures of Merit

Figures of merit:

- Signal to noise ratio: SNR = $\frac{P_a}{N_S} \sqrt{\frac{\tau}{\Delta f_a}}$
- Scan rate: $R \propto \int SNR(f)^2$

Frequency scaling:

- Decreased signal power: $P_a \propto QV$
- Effective scan rate scaling: $R \propto v^{-14/3}$

 $f \approx 5 \text{ GHz}$

Josephson Parametric Amplifiers (JPAs)

Image:

- Tunable LC resonator
- Inductance from SQUIDs

•
$$\omega_0 = 1/\sqrt{LC}$$

JPAs Source Squeezed States

Signal: $\hat{V} = \hat{X}\cos(2\pi ft) + \hat{Y}\sin(2\pi ft)$

Uncertainty: $\sigma_{\hat{X}}^2 \sigma_{\hat{Y}}^2 \ge \frac{1}{4}$

Backes

Slide 5/11

Squeezed State Receiver Operation

Measured Noise Reduction

Squeezed State Receiver Benefit

Most sensitive axion search $> 10 \mu eV$

First dark matter exclusion enhanced by quantum squeezing

Conclusion

- Excluded 70 MHz of axion parameter space at $1.38 imes g_{KSVZ}^{\gamma}$
- First quantum squeezed state enhanced run is complete
- Doubled data collection rate with quantum squeezing

Thanks:

Further reading:

Squeezing results: arxiv.org:2008.01853 (2020)

Bayesian analysis: Phys. Rev. D, 101, 123001 (2020)

Squeezed state receiver: Phys. Rev. X 9, 021023 (2019)

Analysis: Phys. Rev. D 96, 123008 (2017)

First results: Phys. Rev. Lett. 118, 061302 (2017)

Instrumentation: Nucl. Instrum. Methods A 854, 11 (2017)

Thank you!

Haystac

Backup Slides

The Axion: A Well-Motivated Solution

- Strong CP problem solution: $\Theta \propto a(x)$
- Lifetime: L > current age of universe
- Couples weakly: $m_a \propto g_{ayy}$
- Interaction: $\mathcal{L} \supset g_{a\gamma\gamma}a\mathbf{E} \cdot \mathbf{B}$

• Acts like a classical field: $hf_a \approx m_a c^2$

Applying the Bayesian Analysis

Prior update:

$$U(\sigma) = \frac{P(\sigma|\text{axion})}{P(\sigma|\text{no axion})}$$

- Calculate *U* for each measured power
- Determine *U* = 0.1 at
 each frequency

